A uniform kernel trick for high and infinite-dimensional two-sample problems
Javier Cárcamo,
Antonio Cuevas and
Luis-Alberto Rodríguez
Journal of Multivariate Analysis, 2024, vol. 202, issue C
Abstract:
We use a suitable version of the so-called ”kernel trick” to devise two-sample tests, especially focussed on high-dimensional and functional data. Our proposal entails a simplification of the practical problem of selecting an appropriate kernel function. Specifically, we apply a uniform variant of the kernel trick which involves the supremum within a class of kernel-based distances. We obtain the asymptotic distribution of the test statistic under the null and alternative hypotheses. The proofs rely on empirical processes theory, combined with the delta method and Hadamard directional differentiability techniques, and functional Karhunen–Loève-type expansions of the underlying processes. This methodology has some advantages over other standard approaches in the literature. We also give some experimental insight into the performance of our proposal compared to other kernel-based approaches (the original proposal by Borgwardt et al. (2006) and some variants based on splitting methods) as well as tests based on energy distances (Rizzo and Székely, 2017).
Keywords: Homogeneity test; Reproducing kernel Hilbert spaces; Supremum-like distances (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X24000241
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000241
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2024.105317
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().