Sparse subspace clustering in diverse multiplex network model
Majid Noroozi and
Marianna Pensky
Journal of Multivariate Analysis, 2024, vol. 203, issue C
Abstract:
The paper considers the DIverse MultiPLEx (DIMPLE) network model, where all layers of the network have the same collection of nodes and are equipped with the Stochastic Block Models. In addition, all layers can be partitioned into groups with the same community structures, although the layers in the same group may have different matrices of block connection probabilities. To the best of our knowledge, the DIMPLE model, introduced in Pensky and Wang (2021), presents the most broad SBM-equipped binary multilayer network model on the same set of nodes and, thus, generalizes a multitude of papers that study more restrictive settings. Under the DIMPLE model, the main task is to identify the groups of layers with the same community structures since the matrices of block connection probabilities act as nuisance parameters under the DIMPLE paradigm. The main contribution of the paper is achieving the strongly consistent between-layer clustering by using Sparse Subspace Clustering (SSC), the well-developed technique in computer vision. In addition, SSC allows to handle much larger networks than spectral clustering, and is perfectly suitable for application of parallel computing. Moreover, our paper is the first one to obtain precision guarantees for SSC when it is applied to binary data.
Keywords: Multilayer network; Sparse subspace clustering; Stochastic block model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X2400040X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x2400040x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2024.105333
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().