EconPapers    
Economics at your fingertips  
 

Max-convolution processes with random shape indicator kernels

Pavel Krupskii and Raphaël Huser

Journal of Multivariate Analysis, 2024, vol. 203, issue C

Abstract: In this paper, we introduce a new class of models for spatial data obtained from max-convolution processes based on indicator kernels with random shape. We show that these models have appealing dependence properties including tail dependence at short distances and independence at long distances. We further consider max-convolutions between such processes and processes with tail independence, in order to separately control the bulk and tail dependence behaviors, and to increase flexibility of the model at longer distances, in particular, to capture intermediate tail dependence. We show how parameters can be estimated using a weighted pairwise likelihood approach, and we conduct an extensive simulation study to show that the proposed inference approach is feasible in relatively high dimensions and it yields accurate parameter estimates in most cases. We apply the proposed methodology to analyze daily temperature maxima measured at 100 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.

Keywords: Kernel convolution process; Short-range spatial dependence; Spatial process; Tail dependence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X24000472
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000472

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2024.105340

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000472