EconPapers    
Economics at your fingertips  
 

Grouped feature screening for ultrahigh-dimensional classification via Gini distance correlation

Yongli Sang and Xin Dang

Journal of Multivariate Analysis, 2024, vol. 204, issue C

Abstract: Gini distance correlation (GDC) was recently proposed to measure the dependence between a categorical variable, Y, and a numerical random vector, X. It mutually characterizes independence between X and Y. In this article, we utilize the GDC to establish a feature screening for ultrahigh-dimensional discriminant analysis where the response variable is categorical. It can be used for screening individual features as well as grouped features. The proposed procedure possesses several appealing properties. It is model-free. No model specification is needed. It holds the sure independence screening property and the ranking consistency property. The proposed screening method can also deal with the case that the response has divergent number of categories. We conduct several Monte Carlo simulation studies to examine the finite sample performance of the proposed screening procedure. Real data analysis for two real life datasets are illustrated.

Keywords: Discrimination analysis; Gini distance correlation; Group screening (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X24000678
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000678

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2024.105360

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000678