New multivariate Gini’s indices
Marco Capaldo and
Jorge Navarro
Journal of Multivariate Analysis, 2025, vol. 206, issue C
Abstract:
The Gini’s mean difference was defined as the expected absolute difference between a random variable and its independent copy. The corresponding normalized version, namely Gini’s index, denotes two times the area between the egalitarian line and the Lorenz curve. Both are dispersion indices because they quantify how far a random variable and its independent copy are. Aiming to measure dispersion in the multivariate case, we define and study new Gini’s indices. For the bivariate case we provide several results and we point out that they are “dependence-dispersion” indices. Covariance representations are exhibited, with an interpretation also in terms of conditional distributions. Further results, bounds and illustrative examples are discussed too. Multivariate extensions are defined, aiming to apply both indices in more general settings. Then, we define efficiency Gini’s indices for any semi-coherent system and we discuss about their interpretation. Empirical versions are considered as well in order to apply multivariate Gini’s indices to data.
Keywords: Bound; Coherent system; Copula; Dispersion measure; Gini’s index; Gini’s mean difference (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X24001015
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001015
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2024.105394
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().