Equality tests of covariance matrices under a low-dimensional factor structure
Masashi Hyodo,
Takahiro Nishiyama,
Hiroki Watanabe,
Tomoyuki Nakagawa and
Kouji Tahata
Journal of Multivariate Analysis, 2025, vol. 206, issue C
Abstract:
We propose an equality test to compare two covariance matrices in a high-dimensional framework while accommodating a low-dimensional latent factor model. We show that null limiting distributions of the test statistics follow a weighted mixture of chi-square distributions under a high-dimensional asymptotic regime combined with weak technical conditions. This distribution depends on the noise covariance matrix and the number of latent factors. Because latent factors are often unknown, we employ an estimation that builds on recent advances in random matrix theory. A numerical study demonstrates the asymptotic power of the proposed test and confirms its favorable analytical properties compared to existing procedures.
Keywords: High-dimensional testing problem; Loading factor dimensions (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X24001040
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001040
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2024.105397
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().