Consistency of empirical distributions of sequences of graph statistics in networks with dependent edges
Jonathan R. Stewart
Journal of Multivariate Analysis, 2025, vol. 207, issue C
Abstract:
One of the first steps in applications of statistical network analysis is frequently to produce summary charts of important features of the network. Many of these features take the form of sequences of graph statistics counting the number of realized events in the network, examples of which are degree distributions, edgewise shared partner distributions, and more. We provide conditions under which the empirical distributions of sequences of graph statistics are consistent in the ℓ∞-norm in settings where edges in the network are dependent. We accomplish this task by deriving concentration inequalities that bound probabilities of deviations of graph statistics from the expected value under weak dependence conditions. We apply our concentration inequalities to empirical distributions of sequences of graph statistics and derive non-asymptotic bounds on the ℓ∞-error which hold with high probability. Our non-asymptotic results are then extended to demonstrate uniform convergence almost surely in selected examples. We illustrate theoretical results through examples, simulation studies, and an application.
Keywords: Empirical distributions of graph statistics; Network data; Statistical network analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X25000156
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x25000156
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2025.105420
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().