EconPapers    
Economics at your fingertips  
 

Geometric scale mixtures of normal distributions

Deepak Prajapati, Sobhan Shafiei, Debasis Kundu and Ahad Jamalizadeh

Journal of Multivariate Analysis, 2025, vol. 208, issue C

Abstract: Recently, Kundu (2017) proposed a multivariate skewed distribution, termed the Geometric-Normal (GN) distribution, by compounding the multivariate normal distribution with the geometric distribution. This distribution is a viable alternative to Azzalini’s multivariate skew-normal distribution and possesses several desirable properties. This paper introduces a novel class of asymmetric distributions by compounding the geometric distribution with scale mixtures of normal distributions. This class constitutes a special case of the continuous mixtures of multivariate normal distributions introduced by Arellano-Valle and Azzalini (2021). The proposed multivariate distributions exhibit high flexibility, featuring heavy tails, multi-modality, and the ability to model skewness. We have also derived several properties of this class and discussed specific examples to illustrate its applications. The expectation–maximization algorithm was employed to calculate the maximum likelihood estimates of the unknown parameters. Simulation experiments have been performed to show the effectiveness of the proposed algorithm. For illustrative purposes, we have provided one multivariate data set where it has been observed that there exist members in the proposed class of models that can provide better fit compared to skew-normal, skew-t, and generalized hyperbolic distribution. In another example, it was demonstrated that when data generated from a heavy-tailed skew-t distribution is contaminated with noise, the proposed distributions offer a better fit compared to the skew-t distribution.

Keywords: Heavy tails; Maximum likelihood estimates; Outliers detection; Skewness; Skew-normal distribution (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X25000259
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:208:y:2025:i:c:s0047259x25000259

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2025.105430

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:jmvana:v:208:y:2025:i:c:s0047259x25000259