A non-parametric U-statistic testing approach for multi-arm clinical trials with multivariate longitudinal data
Dhrubajyoti Ghosh and
Sheng Luo
Journal of Multivariate Analysis, 2025, vol. 209, issue C
Abstract:
Randomized clinical trials (RCTs) often involve multiple longitudinal primary outcomes to comprehensively assess treatment efficacy. The Longitudinal Rank-Sum Test (LRST) Xu et al. (2025), a robust U-statistics-based, non-parametric, rank-based method, effectively controls Type I error and enhances statistical power by leveraging the temporal structure of the data without relying on distributional assumptions. However, the LRST is limited to two-arm comparisons. To address the need for comparing multiple doses against a control group in many RCTs, we extend the LRST to a multi-arm setting. This novel multi-arm LRST provides a flexible and powerful approach for evaluating treatment efficacy across multiple arms and outcomes, with a strong capability for detecting the most effective dose in multi-arm trials. Extensive simulations demonstrate that this method maintains excellent Type I error control while providing greater power compared to the two-arm LRST with multiplicity adjustments. Application to the Bapineuzumab (Bapi) 301 trial further validates the multi-arm LRST’s practical utility and robustness, confirming its efficacy in complex clinical trial analyses.
Keywords: Longitudinal data; Rank-Sum Test; U-statistics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X25000429
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:209:y:2025:i:c:s0047259x25000429
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2025.105447
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().