Generalized score matching
Jiazhen Xu,
Janice L. Scealy,
Andrew T.A. Wood and
Tao Zou
Journal of Multivariate Analysis, 2025, vol. 210, issue C
Abstract:
Score matching is an estimation procedure that has been developed for statistical models whose probability density function or probability mass function is known up to proportionality but whose normalizing constant is intractable, so that maximum likelihood is difficult or impossible to implement. To date, applications of score matching have focused more on continuous IID models. Motivated by various data modeling problems, this article proposes a unified asymptotic theory of generalized score matching developed under the independence assumption, covering both continuous and discrete response data, thereby giving a sound basis for score-matching-based inference. Real data analyses and simulation studies provide convincing evidence of strong practical performance of the proposed methods.
Keywords: Auto model; Compositional data analysis; Conway–Maxwell–Poisson regression; Fisher divergence; Intractable normalizing constant (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X25000685
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:210:y:2025:i:c:s0047259x25000685
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2025.105473
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().