Test for a specified signal when the noise covariance matrix is unknown
C. G. Khatri and
C. Radhakrishna Rao
Journal of Multivariate Analysis, 1987, vol. 22, issue 2, 177-188
Abstract:
In the univariate case it is well known that the one sided t test is uniformly most powerful for the null hypothesis against all one sided alternatives. Such a property does not easily extend to the multivariate case. In this paper, a test derived for the hypothesis that the mean of a vector random variable is zero against specified alternatives, when the covariance matrix is unknown. This test depends on the given alternatives and is more powerful than Hotelling's T2. The results are derived both for real and complex vector observations and under normal and spherical distributions. The properties of the proposed tests are investigated in detail when a single alternative is specified.
Keywords: Complex; normal; conditional; tests; Hotelling's; T2; Rao's; U; statistic; Student's; t (search for similar items in EconPapers)
Date: 1987
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(87)90084-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:22:y:1987:i:2:p:177-188
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().