Maximum likelihood estimation of a change-point in the distribution of independent random variables: General multiparameter case
P.K. Bhattacharya
Journal of Multivariate Analysis, 1987, vol. 23, issue 2, 183-208
Abstract:
In a sequence ofn independent random variables the pdf changes fromf(x, 0) tof(x, 0 + [delta]vn-1) after the firstn[lambda] variables. The problem is to estimate[lambda] [set membership, variant] (0, 1 ), where 0 and [delta] are unknownd-dim parameters andvn --> [infinity] slower thann1/2. Letn denote the maximum likelihood estimator (mle) of[lambda]. Analyzing the local behavior of the likelihood function near the true parameter values it is shown under regularity conditions that ifnn2(- [lambda]) is bounded in probability asn --> [infinity], then it converges in law to the timeT([delta]j[delta])1/2 at which a two-sided Brownian motion (B.M.) with drift1/2([delta]'J[delta])1/2[short parallel]t[short parallel]on(-[infinity], [infinity]) attains its a.s. unique minimum, whereJ denotes the Fisher-information matrix. This generalizes the result for small change in mean of univariate normal random variables obtained by Bhattacharya and Brockwell (1976,Z. Warsch. Verw. Gebiete37, 51-75) who also derived the distribution ofT[mu] for[mu] > 0. For the general case an alternative estimator is constructed by a three-step procedure which is shown to have the above asymptotic distribution. In the important case of multiparameter exponential families, the construction of this estimator is considerably simplified.
Keywords: change-point; maximum; likelihood; estimator; weak; convergence; Brownian; motion (search for similar items in EconPapers)
Date: 1987
References: Add references at CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(87)90152-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:23:y:1987:i:2:p:183-208
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().