Concentration inequalities for Gauss-Markov estimators
Morris L. Eaton
Journal of Multivariate Analysis, 1988, vol. 25, issue 1, 119-138
Abstract:
Let M be the regression subspace and [gamma] the set of possible covariances for a random vector Y. The linear model determined by M and [gamma] is regular if the identity is in [gamma] and if [Sigma](M)[subset, double equals]M for all [Sigma][set membership, variant][gamma]. For such models, concentration inequalities are given for the Gauss-Markov estimator of the mean vector under various distributional and invariance assumptions on the error vector. Also, invariance is used to establish monotonicity results relative to a natural group induced partial ordering.
Keywords: Gauss; Markov; estimators; concentration; inequalities; elliptical; densities; log; concave; densities; majorization; group; induced; orderings; reflection; groups (search for similar items in EconPapers)
Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(88)90157-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:25:y:1988:i:1:p:119-138
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().