EconPapers    
Economics at your fingertips  
 

Ergodicity and central limit theorems for a class of Markov processes

Rabi N. Bhattacharya and Oesook Lee

Journal of Multivariate Analysis, 1988, vol. 27, issue 1, 80-90

Abstract: We consider a class of discrete parameter Markov processes on a complete separable metric space S arising from successive compositions of i.i.d. random maps on S into itself, the compositions becoming contractions eventually. A sufficient condition for ergodicity is found, extending a result of Dubins and Freedman [8] for compact S. By identifying a broad subset of the range of the generator, a functional central limit theorem is proved for arbitrary Lipschitzian functions on S, without requiring any mixing type condition or irreducibility.

Keywords: contractions; invariant; distribution; functional; central; limit; theorem (search for similar items in EconPapers)
Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(88)90117-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:27:y:1988:i:1:p:80-90

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:27:y:1988:i:1:p:80-90