EconPapers    
Economics at your fingertips  
 

A strong law of large numbers for nonparametric regression

Hari Mukerjee

Journal of Multivariate Analysis, 1989, vol. 30, issue 1, 17-26

Abstract: Suppose (i1,n, ..., in,n) is permutation of (1, ..., n) for each positive integer n such that the order of the indices {1, h., n - 1} in the permutation corresponding to n - 1 is preserved. If {Zn} is a sequence of mean-zero random variables and {kn} is a sequence of positive integers with kn --> [infinity] and kn/n --> 0, we prove max1 0 a.s. under a first moment-type assumption on {Zn} and appropriate conditions on the permutations and the growth rate of {kn}. The result is applied to prove strong consistency of nonparametric estimators of regression functions with heavy-tailed error distributions using the k-nearest neighbor and the unikform kernel methods under similar moment assumptions on the conditional distributions of the regressed variable.

Keywords: Strong; law; of; large; numbers; nearest; neighbor; regression; strong; consistency (search for similar items in EconPapers)
Date: 1989
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(89)90085-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:30:y:1989:i:1:p:17-26

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:30:y:1989:i:1:p:17-26