On estimation of a matrix of normal means with unknown covariance matrix
Yoshihiko Konno
Journal of Multivariate Analysis, 1991, vol. 36, issue 1, 44-55
Abstract:
Let X be an m - p matrix normally distributed with matrix of means B and covariance matrix Im [circle times operator] [Sigma], where [Sigma] is a p - p unknown positive definite matrix. This paper studies the estimation of B relative to the invariant loss function tr . New classes of invariant minimax estimators are proposed for the case p > m + 1, which are multivariate extensions of the estimators of Stein and Baranchik. The method involves the unbiased estimation of the risk of an invariant estimator which depends on the eigenstructure of the usual F = XS-1Xt matrix, where S: p - p follows a Wishart matrix with n degrees of freedom and mean n[Sigma].
Keywords: minimax; estimation; Stein; estimator; Baranchik-type; estimator (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(91)90090-O
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:36:y:1991:i:1:p:44-55
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().