A nonparametric test of fit of a parametric model
Andrzej S. Kozek
Journal of Multivariate Analysis, 1991, vol. 37, issue 1, 66-75
Abstract:
We propose a natural test of fit of a parametric regression model. The test is based on a comparison of a nonparametric kernel estimate of a regression function with its least-squares parametric estimate. Under the null hypothesis we derive approximations to the probability distribution functions of the test statistic. The approximations are exact with a power rate. Moreover, we prove the consistency of the test.
Keywords: least; squares; method; maximum; deviation; distribution; nonlinear; regression; nonparametric; regression; parametric; regression; test; of; fit (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(91)90111-E
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:37:y:1991:i:1:p:66-75
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().