Improved estimators for the GMANOVA problem with application to Monte Carlo simulation
Ming Tan
Journal of Multivariate Analysis, 1991, vol. 38, issue 2, 262-274
Abstract:
The problem of finding classes of estimators which improve upon the usual (e.g., ML, LS) estimator of the parameter matrix in the GMANOVA model under (matrix) quadratic loss is considered. Classes of improved estimators are obtained via combining integration-by-parts methods for normal and Wishart distributions. Also considered is the application of control variates to achieve better efficiency in multipopulation multivariate simulation studies.
Keywords: GMANOVA; unbiased; estimate; of; risk; Stein; effect; shrinkage; estimator; quadratic; loss; matrix; loss; control; variates; Minimax; simulation (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(91)90045-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:38:y:1991:i:2:p:262-274
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().