EconPapers    
Economics at your fingertips  
 

Approximations and two-sample tests based on P-P and Q-Q plots of the Kaplan-Meier estimators of lifetime distributions

Paul Deheuvels and John Einmahl

Journal of Multivariate Analysis, 1992, vol. 43, issue 2, 200-217

Abstract: Let Fn and Gn denote the Kaplan-Meier product-limit estimators of lifetime distributions based on two independent samples, and let Fninv and Gninv denote their quantile functions. We consider the corresponding P-P plot Fn(Gninv) and Q-Q plot Fninv(Gn), and establish strong approximations of empirical processes based on these P-P and Q-Q plots by appropriate sequences of Gaussian processes. It is shown that the rates of approximation we obtain are the best which can be achieved by this method. We apply these results to obtain the limiting distributions of test statistics which are functionals of Fn(Gninv(s)) - s, Gn(Fninv(s)) - s, and Fn(Gninv(s)) + Gn(Fninv(s)) - 2s, and propose solutions to the problem of testing the assumption that the underlying lifetime distributions F and G are equal, in the case where the censoring distributions are arbitrary and unknown.

Keywords: two-sample; test; test; of; fit; product-limit; estimators; random; censorship; empirical; and; quantile; processes; approximation; invariance; principles; Bahadur; representation (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(92)90034-D
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:43:y:1992:i:2:p:200-217

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:43:y:1992:i:2:p:200-217