Some Characteristic Properties of the Fisher Information Matrix via Cacoullos-Type Inequalities
V. Papathanasiou
Journal of Multivariate Analysis, 1993, vol. 44, issue 2, 256-265
Abstract:
Some lower bounds for the variance of a function g of a random vector X are extended to a wider class of distributions. Using these bounds, some useful inequalities for the Fisher information are obtained for convolutions and linear combinations of random variables. Finally, using these inequalities, simple proofs are given of classical characterizations of the normal distribution, under certain restrictions, including the matrix analogue of the Darmois-Skitovich result.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71014-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:44:y:1993:i:2:p:256-265
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().