EconPapers    
Economics at your fingertips  
 

Admissibility under the Frequentist's Validity Constraint in Estimating the Loss of the Least-Squares Estimator

F. S. Hsieh and J. T. G. Hwang

Journal of Multivariate Analysis, 1993, vol. 44, issue 2, 279-285

Abstract: We consider the problem of estimating the sum of squared error loss L = [beta]-[beta]2 of the least-squares esitmator [beta] for [beta], the regression coefficient. The standard estimator L0 is the expected value of L. Here the error variance is assumed to be known. Previous results of Johnstone (1988. In Statistical Decision Theory and Related Topics IV (S. Gupta and J. Berger, Eds.), 1, 361-379, Springer-Verlag, New York) show that L0 is inadmissible under the loss (L-L)2 if the dimension of [beta] is five or more. However, since we are estimating the loss, a typical frequentist principle will lead to the usage of estimators which are frequentist valid. Johnston's improved esitmator, however, violates this principle. In this paper, we prove that it is impossible to improve upon L0 among the class of frequentist valid estimators. The work parallels Hwang and Brown (1991, Ann. Statist.10 1964-1977) for the corresponding confidence set problems, although the argument is entirely different and much simpler.

Date: 1993
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71016-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:44:y:1993:i:2:p:279-285

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:44:y:1993:i:2:p:279-285