On the Performance of Kernel Estimators for High-Dimensional, Sparse Binary Data
B. Grund and
P. Hall
Journal of Multivariate Analysis, 1993, vol. 44, issue 2, 321-344
Abstract:
We develop mathematical models for high-dimensional binary distributions, and apply them to the study of smoothing methods for sparse binary data. Specifically, we treat the kernel-type estimator developed by Aitchison and Aitken (Biometrika63 (1976), 413-420). Our analysis is of an asymptotic nature. It permits a concise account of the way in which data dimension, data sparseness, and distribution smoothness interact to determine the over-all performance of smoothing methods. Previous work on this problem has been hampered by the requirement that the data dimension be fixed. Our approach allows dimension to increase with sample size, so that the theoretical model may accurately reflect the situations encountered in practice; e.g., approximately 20 dimensions and 40 data points. We compare the performance of kernel estimators with that of the cell frequency estimator, and describe the effectiveness of cross-validation.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71019-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:44:y:1993:i:2:p:321-344
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().