EconPapers    
Economics at your fingertips  
 

Improved Multivariate Prediction under a General Linear Model

C. A. Gotway and N. Cressie

Journal of Multivariate Analysis, 1993, vol. 45, issue 1, 56-72

Abstract: Assuming a general linear model with known covariance matrix, several linear and nonlinear predictors are presented and their properties are discussed. In the context of simultaneous multiple prediction, a total sum of squared errors is suggested as a loss function for comparing predictors. Based on a rundamental relationship hetween prediction and estimation, a very general class of predictors is developed from which predictors with uniformly smaller risk than that of the classical best linear unbiased (i.e., universal kriging) predictor can be constructed.

Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71026-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:45:y:1993:i:1:p:56-72

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:45:y:1993:i:1:p:56-72