Independent Variables with Independent Sum and Difference: S1-Case
Y. Baryshnikov,
B. Eisenberg and
W. Stadje
Journal of Multivariate Analysis, 1993, vol. 45, issue 2, 161-170
Abstract:
A classic result in probability theory states that two independent real-valued random variables having independent sum and difference are either constant or normally distributed with the same variance. In this article conditions are round on independent random variables X and Y taking values in the group of real numbers modulo 2[pi] so that X +Y and X - Y are independent. When X and Y are identically distributed, the small number of possible distributions for which X and Y have the desired property is known. In the general case there is a richer family of possible distributions for X and Y.
Date: 1993
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71031-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:45:y:1993:i:2:p:161-170
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().