Kernel Estimators for Cell Probabilities
B. Grund
Journal of Multivariate Analysis, 1993, vol. 46, issue 2, 283-308
Abstract:
Kernel density estimators for discrete multivariate data are investigated, using the notation framework of contingency tables. We derive large sample properties of kernel estimators and the least-squares cross-validation method for choosing the bandwidth, including the asymptotic bias, the mean summed squared error, the actual summed squared error, and the asymptotic distribution of the resulting non-parametric estimator. We show that the least-squares cross-validation procedure is superior to Kullback-Leibler cross-validation in terms of mean summed squared error, but that the least-squares cross-validation is still sub-optimal concerning actual summed squared error.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71062-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:46:y:1993:i:2:p:283-308
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().