Correcting the Negativity of High-Order Kernel Density Estimators
P. Hall and
R. D. Murison
Journal of Multivariate Analysis, 1993, vol. 47, issue 1, 103-122
Abstract:
Two methods are suggested for removing the problem of negativity of high-order kernel density estimators. It is shown that, provided the underlying density has at least moderately light tails, each method has the same asymptotic integrated squared error (ISE) as the original kernel estimator. For example, if the tails of the density decrease like a power of x-1, as x increases, then a necessary and sufficient condition for ISEs to be asymptotically equivalent is that a moment of order 1 + [epsilon] be finite for some [epsilon] > 0. The important practical conclusion to be drawn from these results is that in most circumstances, the bandwidth of the original kernel estimator may be used to good effect in the new, nonnegative estimator. A numerical study verifies that this is indeed the case, for a variety of different distributions.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71073-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:47:y:1993:i:1:p:103-122
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().