Estimating a Multidimensional Extreme-Value Distribution
John Einmahl,
L. Dehaan and
Xiaoqi Huang
Journal of Multivariate Analysis, 1993, vol. 47, issue 1, 35-47
Abstract:
Let F and G be multivariate probability distribution functions, each with equal one dimensional marginals, such that there exists a sequence of constants an > 0, n [set membership, variant] , with [formula] for all continuity points (x1, ..., xd) of G. The distribution function G is characterized by the extreme-value index (determining the marginals) and the so-called angular measure (determining the dependence structure). In this paper, a non-parametric estimator of G, based on a random sample from F, is proposed. Consistency as well as asymptotic normality are proved under certain regularity conditions.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71069-9
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Estimating a multidimensional extreme-value distribution (1993) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:47:y:1993:i:1:p:35-47
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().