EconPapers    
Economics at your fingertips  
 

Halfplane Trimming for Bivariate Distributions

J. C. Masse and R. Theodorescu

Journal of Multivariate Analysis, 1994, vol. 48, issue 2, 188-202

Abstract: Let [mu] be a probability measure on R2 and let u [set membership, variant] (0, 1). A bivariate u-trimmed region D(u), defined as the intersection of all halfplanes whose [mu]-probability measure is at least equal to u, is studied. It is shown that D(u) is not empty for u sufficiently close to 1 and that D(u) satisfies some natural continuity properties. Limit behavior is also considered, the main result being that the weak convergence of a sequence of probability measures entails the pointwise convergence with respect to Hausdorff distance of the associated trimmed regions; this is then applied to derive asymptotics of the empirical trimmed regions. A brief discussion of the extension of the results to higher dimensions is also given.

Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(84)71002-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:48:y:1994:i:2:p:188-202

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:48:y:1994:i:2:p:188-202