Exponential Mixture Models with Long-Term Survivors and Covariates
M. E. Ghitany,
R. A. Maller and
S. Zhou
Journal of Multivariate Analysis, 1994, vol. 49, issue 2, 218-241
Abstract:
Suppose a population contains individuals who may be subject to failure with exponentially distributed failure times, or else are "immune" to failure. We do not know which individuals are immune but we can infer their presence in a data set if many of the largest failure times are censored. We also have explanatory vectors containing covariate information on each individual. Models for data with such immune or "cured" individuals are of great interest in medical and criminological statistics, for example. In this paper we provide sufficient conditions for the existence, consistency, and asymptotic normality of maximum likelihood estimators for the parameters in a useful parameterization of these models. The theory is then applied to derive the asymptotic properties of the likelihood ratio test for a difference between immune proportions in a "one-way" classification. A procedure for testing the "boundary" hypothesis, that there are in fact no immunes present in data with a one-way classification, is also discussed.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(84)71023-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:49:y:1994:i:2:p:218-241
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().