Improved Nonnegative Estimation of Variance Components in Balanced Multivariate Mixed Models
T Mathew,
A. Niyogi and
B. K. Sinha
Journal of Multivariate Analysis, 1994, vol. 51, issue 1, 83-101
Abstract:
Consider the independent Wishart matrices S1 W([Sigma] + [lambda][Theta],q1) and S2 W([Sigma], q2) where [Sigma] is an unknown positive definite (p.d.) matrix, [Theta] is an unknown nonnegative definite (n.n.d.) matrix, and [lambda] is a known positive scalar. For the estimation of [Theta], a class of estimators of the form [Theta](c,[epsilon]) = (c/[lambda]){S1/q1 - [epsilon](S2/q2)} (c >= 0, [epsilon] 0, [epsilon] > 0, the estimator obtained by taking the positive part of [Theta](c, [epsilon]) results in an n.n.d. estimator, say [Theta](c, [epsilon]) +, that is uniformly better than [Theta]U. Numerical results indicate that in terms of mean squared error, [Theta](c, [epsilon]) + performs much better than both [Theta]U and the restricted maximum likelihood estimator [Theta]REML of [Theta]. Similar results are also obtained for the nonnegative estimation of tr [Theta] and a'[Theta]a, where a is an arbitrary nonzero vector. For estimating [Sigma], we have derived estimators that are claimed to be uniformly better than the unbiased estimator [Sigma]U = S2/q2 under the squared error loss function and the entropy loss function. We have been able to establish the claim only in the bivariate case. Numerical results are reported showing the risk improvement of our proposed estimators of [Sigma].
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(84)71051-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:51:y:1994:i:1:p:83-101
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().