EconPapers    
Economics at your fingertips  
 

On Joint Estimation of Regression and Overdispersion Parameters in Generalized Linear Models for Longitudinal Data

Brajendra C. Sutradhar and R. Prabhakar Rao

Journal of Multivariate Analysis, 1996, vol. 56, issue 1, 90-119

Abstract: Liang and Zeger introduced a class of estimating equations that gives consistent estimates of regression parameters and of their variances in the class of generalized linear models for longitudinal data. When the response variable in such models is subject to overdispersion, the oerdispersion parameter does not only influence the marginal variance, it may also influence the mean of the response variable. In such cases, the overdispersion parameter plays a significant role in the estimation of the regression parameters. This raises the necessity for a joint estimation of the regression, as well as overdispersion parameters, in order to describe the marginal expectation of the outcome variable as a function of the covariates. To correct for the effect of overdispersion, we, therefore, exploit a general class of joint estimating equations for the regression and overdispersion parameters. This is done, first, under the working assumption that the observations for a subject are independent and then under the general condition that the observations are correlated. In the former case, both score and quasi-score estimating equations are developed. The score equations are obtained from the marginal likelihood of the data, and the quasi-score equations are derived by exploiting the first two moments of the marginal distribution. This quasi-score equations approach requires a weight matrix, usually referred to as the pseudo-covariance weight matrix, which we construct under the assumption that the observations for a subject (or in a cluster) are independent. In the later case when observations are correlated, quasi-score estimating equations are developed in the manner similar to that of the independence case but the pseudo-covariance weight matrix is constructed from a suitable working covariance matrix of the longitudinal observations, the joint distribution of the observations being unknown. Asymptotic theory is provided for the general class of joint estimators for the regression and overdispersion parameters. The asymptotic distributional results are also applied to develop suitable chi-square test for testing for the regression of the overdispersed data.

Keywords: Exponential; family; mixture; model; overdispersion; joint; estimating; equations; marginal; likelihood; mixed; quasi-score; equations; score; equations; multivariate; Gaussian; consistent; estimates; asymptotic; chi-square; test; (null) (search for similar items in EconPapers)
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90006-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:56:y:1996:i:1:p:90-119

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:56:y:1996:i:1:p:90-119