Estimation of the Location of the Maximum of a Regression Function Using Extreme Order Statistics
Hung Chen,
Mong-Na Lo Huang and
Wen-Jang Huang
Journal of Multivariate Analysis, 1996, vol. 57, issue 2, 191-214
Abstract:
In this paper, we consider the problem of approximating the location,x0[set membership, variant]C, of a maximum of a regresion function,[theta](x), under certain weak assumptions on[theta]. HereCis a bounded interval inR. A specific algorithm considered in this paper is as follows. Taking a random sampleX1, ..., Xnfrom a distribution overC, we have (Xi, Yi), whereYiis the outcome of noisy measurement of[theta](Xi). Arrange theYi's in nondecreasing order and take the average of ther Xi's which are associated with therlargest order statistics ofYi. This average,x0, will then be used as an estimate ofx0. The utility of such an algorithm with fixed r is evaluated in this paper. To be specific, the convergence rates ofx0tox0are derived. Those rates will depend on the right tail of the noise distribution and the shape of[theta](·) nearx0.
Keywords: extreme-value; distribution; global; function; optimization; from; noisy; samples; errors; of; measurement; ranking; selection (search for similar items in EconPapers)
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90029-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:57:y:1996:i:2:p:191-214
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().