The Limit Distribution of the Largest Interpoint Distance from a Symmetric Kotz Sample
Norbert Henze and
Timo Klein
Journal of Multivariate Analysis, 1996, vol. 57, issue 2, 228-239
Abstract:
Generalizing recent work of P. C. Matthews and A. L. Rukhin (Ann. Appl. Probab.3(1993), 454-466), we obtain the limit law of the largest interpoint Euclidean distance for a spherically symmetric multivariate sample of the Kotz distribution. While going through the proof, some errors in the reasoning given by Matthews and Rukhin are pointed out and corrected.
Keywords: largest; interpoint; distance; symmetric; multivariate; Kotz; distribution; exceedances; U-statistic; extreme; value; distribution. (search for similar items in EconPapers)
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90031-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:57:y:1996:i:2:p:228-239
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().