EconPapers    
Economics at your fingertips  
 

Bivariate Tensor-Product B-Splines in a Partly Linear Model

Xuming He and Peide Shi

Journal of Multivariate Analysis, 1996, vol. 58, issue 2, 162-181

Abstract: In some applications, the mean or median response is linearly related to some variables but the relation to additional variables are not easily parameterized. Partly linear models arise naturally in such circumstances. Suppose that a random sample {(Ti, Xi, Yi),i=1, 2, ..., n} is modeled byYi=XTi[beta]0+g0(Ti)+errori, whereYiis a real-valued response,Xi[set membership, variant]RpandTiranges over a unit square, andg0is an unknown function with a certain degree of smoothness. We make use of bivariate tensor-product B-splines as an approximation of the functiong0and consider M-type regression splines by minimization of [summation operator]ni=1 [rho](Yi-XTi[beta]-gn(Ti)) for some convex function[rho]. Mean, median and quantile regressions are included in this class. We show under appropriate conditions that the parameter estimate of[beta]achieves its information bound asymptotically and the function estimate ofg0attains the optimal rate of convergence in mean squared error. Our asymptotic results generalize directly to higher dimensions (for the variableT) provided that the functiong0is sufficiently smooth. Such smoothness conditions have often been assumed in the literature, but they impose practical limitations for the application of multivariate tensor product splines in function estimation. We also discuss the implementation of B-spline approximations based on commonly used knot selection criteria together with a simulation study of both mean and median regressions of partly linear models.

Keywords: B-spline; functions; rate; of; convergence; mean; regression; median; regression; M-estimator; partly; linear; model; regression; quantile (search for similar items in EconPapers)
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (38)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90045-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:58:y:1996:i:2:p:162-181

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:58:y:1996:i:2:p:162-181