A Paradox Concerning Shrinkage Estimators: Should a Known Scale Parameter Be Replaced by an Estimated Value in the Shrinkage Factor?
Dominique Fourdrinier and
William E. Strawderman
Journal of Multivariate Analysis, 1996, vol. 59, issue 2, 109-140
Abstract:
When estimating, under quadratic loss, the location parameter[theta]of a spherically symmetric distribution with known scale parameter, we show that it may be that the common practice of utilizing the residual vector as an estimate of the variance is preferable to using the known value of the variance. In the context of Stein-like shrinkage estimators, we exhibit sufficient conditions on the spherical distributions for which this paradox occurs. In particular, we show that it occurs fort-distributions when the dimension of the residual vector is sufficiently large. The main tools in the development are upper and lower bounds on the risks of the James-Stein estimators which are exact at[theta]=0.
Keywords: spherical; symmetry; quadratic; loss; James-Stein; estimation; location; parameter; minimaxity; robustness (search for similar items in EconPapers)
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90056-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:59:y:1996:i:2:p:109-140
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().