EconPapers    
Economics at your fingertips  
 

Wishart and Chi-Square Distributions Associated with Matrix Quadratic Forms

Thomas Mathew and Kenneth Nordström

Journal of Multivariate Analysis, 1997, vol. 61, issue 1, 129-143

Abstract: For a normally distributed random matrixYwith a general variance-covariance matrix[Sigma]Y, and for a nonnegative definite matrixQ, necessary and sufficient conditions are derived for the Wishartness ofY'QY. The conditions resemble those obtained by Wong, Masaro, and Wang (1991,J. Multivariate Anal.39, 154-174) and Wong and Wang (1993,J. Multivariate Anal.44, 146-159), but are verifiable and are obtained by elementary means. An explicit characterization is also obtained for the structure of[Sigma]Yunder which the distribution ofY'QYis Wishart. Assuming[Sigma]Ypositive definite, a necessary and sufficient condition is derived for every univariate quadratic fromlY'QYlto be distributed as a multiple of a chi-square. For the caseQ=In, the corresponding structure of[Sigma]Yis identified. An explicit counterexample is constructed showing that Wishartness ofY'Yneed not follow when, for every vectorl, l'Y'Ylis distributed as a multiple of a chi-square, complementing the well-known counterexample by Mitra (1969,Sankhya31, 19-22). Application of the results to multivariate components of variance models is briefly indicated.

Keywords: complex; covariance; structure; group; symmetry; covariance; model; multivariate; components; of; variance; model; skew-symmetric; matrix (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91665-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:61:y:1997:i:1:p:129-143

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:61:y:1997:i:1:p:129-143