On the Asymptotics of Quantizers in Two Dimensions
Yingcai Su
Journal of Multivariate Analysis, 1997, vol. 61, issue 1, 67-85
Abstract:
When the mean square distortion measure is used, asymptotically optimal quantizers of uniform bivariate random vectors correspond to the centers of regular hexagons (Newman, 1982), and if the random vector is non-uniform, asymptotically optimal quantizers are the centers of piecewise regular hexagons where the sizes of the hexagons are determined by a properly chosen density function (Su and Cambanis, 1996). This paper considers bivariate random vectors with finite[gamma]th ([gamma]>0) moment. If the[gamma]th mean distortion measure is used, a complete characterization of the asymptotically optimal quantizers is given. Furthermore, it is shown that the procedure introduced by Su and Cambanis (1996) is also asymptotically optimal for every[gamma]>0. Examples with a normal distribution and a Pearson type VII distribution are considered.
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91663-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:61:y:1997:i:1:p:67-85
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().