Combining Independent Information in a Multivariate Calibration Problem
K. Krishnamoorthy and
Darren J. Johnson
Journal of Multivariate Analysis, 1997, vol. 61, issue 2, 171-186
Abstract:
The problem of combining independent information from different sources in a multivariate calibration setup is considered. The dimensions of the response vectors from various sources may be unequal. A linear combination of the classical estimators based on the individual sources is proposed as an estimator for the unknown explanatory variable. It is shown that the combined estimator has finite mean provided the sum of the dimensions of the response vectors exceeds one and has finite mean squared error if it exceeds two. Expressions for asymptotic bias and mean squared error are given.
Keywords: bias; classical; estimator; Cholesky; decomposition; mean; squared; error (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91667-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:61:y:1997:i:2:p:171-186
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().