EconPapers    
Economics at your fingertips  
 

Goodness-of-Fit Tests for a Multivariate Distribution by the Empirical Characteristic Function

Yanqin Fan

Journal of Multivariate Analysis, 1997, vol. 62, issue 1, 36-63

Abstract: In this paper, we take the characteristic function approach to goodness-of-fit tests. It has several advantages over existing methods: First, unlike the popular comparison density function approach suggested in Parzen (1979), our approach is applicable to both univariate and multivariate data; Second, in the case where the null hypothesis is composite, the approach taken in this paper yields a test that is superior to tests based on empirical distribution functions such as the Cramér- von Mises test, because on the one hand the asymptotic critical values of our test are easily obtained from the standard normal distribution and are not affected by-consistent estimation of the unknown parameters in the null hypothesis, and on the other hand, our test extends that in Eubank and LaRiccia (1992) and hence is more powerful than the Cramér-von Mises test for high-frequency alternatives.

Keywords: characetistic; function; comparison; density; function; the; Cramer-von; Mises; test; Fourier; series; consistent; tests; directional; tests (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91672-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:62:y:1997:i:1:p:36-63

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:36-63