EconPapers    
Economics at your fingertips  
 

Classification of Binary Vectors by Stochastic Complexity

Mats Gyllenberg, Timo Koski and Martin Verlaan

Journal of Multivariate Analysis, 1997, vol. 63, issue 1, 47-72

Abstract: Stochastic complexity is treated as a tool of classification, i.e., of inferring the number of classes, the class descriptions, and the class memberships for a given data set of binary vectors. The stochastic complexity is evaluated with respect to the family of statistical models defined by finite mixtures of multivariate Bernoulli distributions obtained by the principle of maximum entropy. It is shown that stochastic complexity is asymptotically related to the classification maximum likelihood estimate. The formulae for stochastic complexity have an interpretation as minimum code lengths for certain universal source codes for storing the binary data vectors and their assignments into the classes in a classification. There is also a decomposition of the classification uncertainty in a sum of an intraclass uncertainty, an interclass uncertainty, and a special parsimony term. It is shown that minimizing the stochastic complexity amounts to maximizing the information content of the classification. An algorithm of alternating minimization of stochastic complexity is given. We discuss the relation of the method to the AUTOCLASS system of Bayesian classification. The application of classification by stochastic complexity to an extensive data base of strains ofEnterobacteriaceaeis described.

Keywords: bacterial; identification; classification; maximum; likelihood; estimate; information; content; maximal; predictive; classification; mixture; of; multivariate; Bernouli; distributions; principle; of; maximum; entropy; universal; source; codes; AUTOCLASS (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91687-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:63:y:1997:i:1:p:47-72

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:63:y:1997:i:1:p:47-72