Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory
José A. Díaz-García,
Ramón Gutierrez Jáimez and
Kanti V. Mardia
Journal of Multivariate Analysis, 1997, vol. 63, issue 1, 73-87
Abstract:
Suppose thatX~N-m([mu], [Sigma], [Theta]). An expression for the density function is given when[Sigma][greater-or-equal, slanted]0 and/or[Theta]:[greater-or-equal, slanted]0. An extension of Uhlig's result (Uhlig [17]) is expanded for the singular value decomposition of a matrixZof orderN-mwhen the rank (Z)=q[less-than-or-equals, slant]min(N, m). This paper fills an important gap in unifying, for the first time, all Wishart and pseudo-Wishart distributions, whether central or noncentral, whether singular or nonsingular, and applying them in shape analysis. In particular, the shape density and the size-and-shape cone density are obtained for the singular general case.
Keywords: singular; matrix; distributions; Wishart; distribution; Pseudo-Wishart; distribution; Normal; matrix; variate; distribution; Noncentral; distributions; singular; values; Stiefel; manifold; shape; size-and-shape (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91689-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:63:y:1997:i:1:p:73-87
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().