A New Class of Consistent Estimators for Stochastic Linear Regressive Models
Hong-Zhi An,
Fred J. Hickernell and
Li-Xing Zhu
Journal of Multivariate Analysis, 1997, vol. 63, issue 2, 242-258
Abstract:
In this paper we propose a new approach for estimating the unknown parameter in the stochastic linear regressive model with stationary ergodic sequence of covariates. Under mild conditions on the joint distribution of the covariate and the error, the estimator constructed is shown to be strongly consistent in two important special cases: (1) The sequence of (variate, covariate) is independent identically distributed (i.i.d.), and (2) the sequence of variates is a stationary autoregressive series. The asymptotical normality is also discussed under more assumptions on the distribution of the covariate.
Keywords: Asymptotic; normality; autoregressive; model; consistent; estimator; robustness; stochastic; regressive; model (search for similar items in EconPapers)
Date: 1997
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91704-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:63:y:1997:i:2:p:242-258
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().