On[alpha]-Symmetric Multivariate Characteristic Functions
Tilmann Gneiting
Journal of Multivariate Analysis, 1998, vol. 64, issue 2, 131-147
Abstract:
Ann-dimensional random vector is said to have an[alpha]-symmetric distribution,[alpha]>0, if its characteristic function is of the form[phi]((u1[alpha]+...+un[alpha])1/[alpha]). We study the classes[Phi]n([alpha]) of all admissible functions[phi]: [0, [infinity])-->. It is known that members of[Phi]n(2) and[Phi]n(1) are scale mixtures of certain primitives[Omega]nand[omega]n, respectively, and we show that[omega]nis obtained from[Omega]2n-1byn-1 successive integrations. Consequently, curious relations between 1- and 2- (or spherically) symmetric distributions arise. An analogue of Askey's criterion gives a partial solution to a question of D. St. P. Richards: If[phi](0)=1,[phi]is continuous, limt-->[infinity] [phi](t)=0, and[phi](2n-2)(t) is convex, then[phi][set membership, variant][Phi]n(1). The paper closes with various criteria for the unimodality of an[alpha]-symmetric distribution.
Keywords: [alpha]-symmetric distribution; Askey's theorem; Bessel function; characteristic function; Fourier transform; multivariate unimodality; positive definite (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91713-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:64:y:1998:i:2:p:131-147
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().