Density Estimation on the Stiefel Manifold
Yasuko Chikuse
Journal of Multivariate Analysis, 1998, vol. 66, issue 2, 188-206
Abstract:
This paper develops the theory of density estimation on the Stiefel manifoldVk, m, whereVk, mis represented by the set ofm-kmatricesXsuch thatX'X=Ik, thek-kidentity matrix. The density estimation by the method of kernels is considered, proposing two classes of kernel density estimators with small smoothing parameter matrices and for kernel functions of matrix argument. Asymptotic behavior of various statistical measures of the kernel density estimators is investigated for small smoothing parameter matrix and/or for large sample size. Some decompositions of the Stiefel manifoldVk, mplay useful roles in the investigation, and the general discussion is applied and examined for a special kernel function. Alternative methods of density estimation are suggested, using decompositions ofVk, m.
Keywords: Stiefel; manifold; Grassmann; manifold; density; estimation; kernel; density; estimators; asymptotic; behavior; of; statistical; measures; decompositions; of; manifolds; hypergeometric; functions; with; matrix; argument. (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91747-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:66:y:1998:i:2:p:188-206
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().