Minimax Risk Inequalities for the Location-Parameter Classification Problem
Pieter C. Allaart
Journal of Multivariate Analysis, 1998, vol. 66, issue 2, 255-269
Abstract:
Minimax risk inequalities are obtained for the location-parameter classification problem. For the classical single observation case with continuous distributions, best possible bounds are given in terms of their Lévy concentration, establishing a conjecture of Hill and Tong (1989). In addition, sharp bounds for the minimax risk are derived for the multiple (i.i.d.) observations case, based on the tail concentration and the Lévy concentration. Some fairly sharp bounds for discontinuous distributions are also obtained.
Keywords: Optimal-partitioning; minimax; risk; classification; partition; range; convexity; theorem; concentration; function; tail; concentration (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91748-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:66:y:1998:i:2:p:255-269
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().