EconPapers    
Economics at your fingertips  
 

Spherical Deconvolution

Dennis M. Healy, Harrie Hendriks and Peter T. Kim

Journal of Multivariate Analysis, 1998, vol. 67, issue 1, 1-22

Abstract: This paper proposes nonparametric deconvolution density estimation overS2. Here we would think of theS2elements of interest being corrupted by randomSO(3) elements (rotations). The resulting density on the observations would be a convolution of theSO(3) density with the trueS2density. Consequently, the methodology, as in the Euclidean case, would be to use Fourier analysis onSO(3) andS2, involving rotational and spherical harmonics, respectively. We especially consider the case where the deconvolution operator is a bounded operator lowering the Sobolev order by a finite amount. Consistency results are obtained with rates of convergence calculated under the expectedS2and Sobolev square norms that are proportionally inverse to some power of the sample size. As an example we introduce the rotational version of the Laplace distribution.

Keywords: consistency; density; estimation; deconvolution; rotational; harmonics; rotational; Laplace; distribution; Sobolev; spaces; spherical; harmonics (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91757-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:67:y:1998:i:1:p:1-22

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:1-22