EconPapers    
Economics at your fingertips  
 

Improved Estimation in Measurement Error Models Through Stein Rule Procedure

Shalabh

Journal of Multivariate Analysis, 1998, vol. 67, issue 1, 35-48

Abstract: This paper examines the role of Stein estimation in a linear ultrastructural form of the measurement errors model. It is demonstrated that the application of Stein rule estimation to the matrix of true values of regressors leads to the overcoming of the inconsistency of the least squares procedure and yields consistent estimators of regression coefficients. A further application may improve the efficiency properties of the estimators of regression coefficients. It is observed that the proposed family of estimators under some constraint on the characterizing scalar dominates the conventional consistent estimator with respect to the criterion of asymptotic risk under a specific quadratic loss function. Then the problem of prediction of the values of the study variable within the sample is considered, and it is found that the predictors based on the proposed family of estimators are always more efficient than the predictors based on the conventional estimator according to asymptotic predictive mean squared error criterion, although both are biased.

Keywords: Measurement; errors; ultrastructural; model; Stein; rule; estimators; predictions; mean; squared; error; matrix; criterion (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91749-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:67:y:1998:i:1:p:35-48

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:35-48