The Asymptotic Loss of Information for Grouped Data
Klaus Felsenstein and
Klaus Pötzelberger
Journal of Multivariate Analysis, 1998, vol. 67, issue 1, 99-127
Abstract:
We study the loss of information (measured in terms of the Kullback-Leibler distance) caused by observing "grouped" data (observing only a discretized version of a continuous random variable). We analyze the asymptotical behaviour of the loss of information as the partition becomes finer. In the case of a univariate observation, we compute the optimal rate of convergence and characterize asymptotically optimal partitions (into intervals). In the multivariate case we derive the asymptotically optimal regular sequences of partitions. Furthermore, we compute the asymptotically optimal transformation of the data, when a sequence of partitions is given. Examples demonstrate the efficiency of the suggested discretizing strategy even for few intervals.
Keywords: Asymptotically; optimal; discretization; grouped; data; Kullback-Leibler; distance; optimal; quantizer; optimal; design. (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91759-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:67:y:1998:i:1:p:99-127
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().