Algebraic Descriptions of Nominal Multivariate Discrete Data
J. L. Teugels and
J. Van Horebeek
Journal of Multivariate Analysis, 1998, vol. 67, issue 2, 203-226
Abstract:
Traditionally, multivariate discrete data are analyzed by means of log-linear models. In this paper we show how an algebraic approach leads naturally to alternative models, parametrized in terms of the moments of the distribution. Moreover we derive a complete characterization of all meaningful transformations of the components and show how transformations affect the moments of a distribution. It turns out that our models provide the necessary formal description of longitudinal data; moreover in the classical case, they can be considered as an analysis tool, complementary to log-linear models.
Keywords: multivariate; discrete; distributions; categorical; data; log-linear; models; marginal; homogeneity (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91764-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:67:y:1998:i:2:p:203-226
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().