A Generalization of Rao's Covariance Structure with Applications to Several Linear Models
Hiroshi Kurata
Journal of Multivariate Analysis, 1998, vol. 67, issue 2, 297-305
Abstract:
This paper presents a generalization of Rao's covariance structure. In a general linear regression model, we classify the error covariance structure into several categories and investigate the efficiency of the ordinary least squares estimator (OLSE) relative to the Gauss-Markov estimator (GME). The classification criterion considered here is the rank of the covariance matrix of the difference between the OLSE and the GME. Hence our classification includes Rao's covariance structure. The results are applied to models with special structures: a general multivariate analysis of variance model, a seemingly unrelated regression model, and a serial correlation model.
Keywords: Gauss-Markov; estimator; ordinary; least; squares; estimator; Rao's; covariance; structure; seemingly; unrelated; regression; model; general; multivariate; analysis; of; variance; model (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91771-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:67:y:1998:i:2:p:297-305
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().